April 29, 2024
Global Renewable News

INTERNATIONAL ENERGY AGENCY
Climate resilience is key to energy transitions in the Middle East and North Africa

July 11, 2023

The Middle East and North Africa (MENA) is one of the world's regions most affected by climate change, imposing challenges on energy systems that are already straining to meet the demands of economic growth, energy security and social welfare.

Between 1980 and 2022, temperatures across MENA increased 0.46°C per decade, well above the world average of 0.18°C1. Precipitation patterns have also changed significantly, aggravating existing water scarcity in some MENA countries, with droughts in Morocco in 2022 and Tunisia in 2023, while causing intense floods in 2022 in the United Arab Emirates, Iran, Saudi Arabia, Qatar, Oman and Yemen.

These climate events impact people, the economy and also energy systems. In Morocco, for example, higher temperatures have boosted electricity demand for cooling, straining a power system that is already stretched. To withstand rising peak demand, Morocco's electricity imports from Spain in May 2022 reached record-high levels.

Even as they expand renewables generation to meet rising electricity demand and emission reduction goals, the region's energy systems will also have to build in more climate resilience to cope with expected increases in climate impacts. With that goal in mind, the International Energy Agency has worked with regional partners (Egypt, Morocco and Oman) to conduct its first climate hazard and exposure assessment for MENA, based on the latest climate models and Graphic Information System (GIS) analyses.

Decreasing rainfall and increasing incidents of drought are major concerns for the energy sector in some MENA countries, particularly in the southern and eastern Mediterranean region. Total precipitation in the southern and eastern Mediterranean region has decreased by around 8.3% per decade in the period 1980-2022. Annual mean precipitation is projected to further decrease in these countries while increasing in the Arabian Peninsula.

Declining water availability resulting from decreasing precipitation in southern and eastern Mediterranean countries is projected to negatively impact fossil-fuelled thermal power plants, which account for 91% of their electricity generation and rely on freshwater for cooling.

In all climate scenarios2, more than 90% of fossil-fuelled thermal power plants in the southern and eastern Mediterranean region are projected to see a drier climate in the coming decade, although the level of aridity may differ among plants and among scenarios. If global greenhouse gas emissions (GHGs) are not mitigated, and fossil-fuelled thermal power plants in the region continue to operate, around 32% of coal power plants, 15% of gas power plants and 9% of oil power plants may face a "significantly" drier climate, which would have even greater impacts on cooling water availability. These rates are higher than the world average and neighbouring countries in the Arabian Peninsula which would experience a slightly wetter climate.

Read the original article.

For more information

International Energy Agency
9 rue de la Fédération
Paris Ile-De-France
France 75739
www.iea.org


From the same organization :
137 Press releases