BETA
This is a BETA experience. You may opt-out by clicking here

More From Forbes

Edit Story

Carbon Engineering - Taking CO2 Right Out Of The Air To Make Gasoline

This article is more than 4 years old.

Extracting CO2 from the air is one of the best ways to reverse climate change without resorting to expensive technologies, convoluted tax schemes or preventing billions of people from getting the energy they need to have a good life.

Carbon Engineering

If you could then make gasoline, diesel, or jet fuel from it, then you’d kill two birds with one stone.

That stone is Carbon Engineering.

Since we are failing to curb global carbon emissions at all, we are left with using our huge brains, which got us into this problem in the first place, to try to wangle our way out of it.

Whether that’s solar engineering or cloud seeding to reduce incident solar radiation, or reforestation, or carbon capture and sequestration from burning fossil fuels, or ocean iron fertilization or putting huge mirrors in space, humans think we can engineer our way around any issue.

And for the most part, we can. We just need to choose wisely so we don’t make matters worse or break the bank.

The best most direct strategy, that has the least bad side-effects, is to remove carbon directly from the atmosphere and make something useful out of it – like fuel – that would further lessen the burden on the environment.

Carbon Engineering

Based in Canada, Carbon Engineering’s Direct Air Capture system directly removes CO2 from the atmosphere, purifies it, and produces a pipeline-ready compressed CO2 gas using only energy and water. This CO2 can be combined with non-fossil fuel-generated hydrogen, to produce ultra-low carbon intensity hydrocarbon fuels such as gasoline, diesel, and Jet Fuel-A.

The pipeline CO2 can also be used for industrial purposes including production of steel and concrete, coatings and carbon fibers, or enhanced oil recovery.

From its pilot plant in Squamish, British Columbia, Carbon Engineering has successfully developed and demonstrated its technologies and has been removing CO2 from the atmosphere since 2015 and converting it into fuels since 2017.

Carbon Engineering

This technology is not fringe, but is supported by Bill Gates, Canadian Natural Resources Limited founder Murray Edwards, Occidental Petroleum and Chevron, among others.

Presently, Carbon Engineering’s Direct Air Capture system can remove a ton of CO2 from the air for about $100. Individual systems would be set to capture about a million tons of CO2 per year, requiring some tens of thousands of systems to keep up with global emissions and reduce atmospheric CO2 to normal levels by 2040.

There are just under 70,000 gas stations in the United States alone, so that isn’t very many to save the planet.

For the next step, Carbon Engineering’s Air to Fuel technology produces synthetic, liquid transportation fuels, such as gasoline, diesel, and Jet-A. The process combines CO2 captured from the atmosphere through their Direct Air Capture system with hydrogen to produce hydrocarbon fuels.

Carbon Engineering

If the hydrogen is produced from water using nuclear or renewable energy, then the fuel is carbon-neutral. And these fuels are drop-in compatible with today’s transportation infrastructure, engines and aircraft.

These fuels can presently be produced by Carbon Engineering for less than $4/gallon, making them slightly more expensive than fossil fuels, but similar to biofuels. Low-carbon mandates and fuel standards make them very competitive with any fuel.

And the costs will continue to come down.

But unlike biofuels, CE fuel doesn’t take much land space or water and is independent of weather or geographic location. The fuel also has a high cetane rating, can be blended with fossil fuels to any degree, and doesn’t have the other contaminants that fossil fuels have, like sulphur, nitrogen and particulates.

Making fuel out of the extracted CO2 is not just a side bar to this approach. It could also remove some of the necessity to transport fuels around the country, and the world, to support strategic missions like those of our military.

Liquid fuel and water comprise the majority of the mass transported to deployed military forces. Resupply of fuel and drinking water for troops in-theater costs lives, about 4 lives for every 100 convoys. To dramatically reduce these, our military wants to deploy small nuclear reactors whose resupply is once every several years or more.

Those SMRs could also run Carbon Engineering’s CO2 extraction-to-fuel systems in places where renewables are not feasible, like in remote sites and for most military missions.

The United States Nuclear Navy wants to do just that. And they can use the excess energy from nuclear reactors that already exist on their ships. They can even separate hydrogen from water using the copper-chlorine process, a thermochemical process for which one step needs heat at exactly the core temperature of a nuclear reactor (530°C) on board an aircraft carrier. For that matter, CO2 can also be extracted from seawater.

Increased atmospheric CO2 from hydrocarbon use has also acidified the oceans in a crisis separate from global warming.

So wouldn’t it be nice to remove some of that and remake hydrocarbons that could be used to displace petroleum products like gasoline that helped cause this in the first place.

Follow me on Twitter or LinkedIn