BETA
This is a BETA experience. You may opt-out by clicking here

More From Forbes

Edit Story

Japan Will Release Radioactive Fukushima Water Into The Ocean, And Why That’s O.K.

This article is more than 2 years old.

Japan will soon begin releasing 250 million gallons of Fukushima nuclear plant water into the Pacific Ocean. And that’s exactly what they should do.

The Japanese government has decided to release treated radioactive water that has been accumulating at the crippled Fukushima nuclear plant into the ocean. This despite opposition from fishermen and consumers in neighboring countries such as China and South Korea.

Tokyo Electric Power Company (Tepco) is expected to start discharging the mildly-radioactive water in 2023, a major development following over seven years of discussions on how to discharge the water used to cool down melted fuel at the Fukushima Daiichi plant.

Prime Minister Yoshihide Suga said his government made the final decision after meeting with Hiroshi Kishi, head of the national federation of fisheries cooperatives, who continues his organization's unwavering opposition to the plan.

The government has said it cannot continue postponing a decision on the disposal issue, given that the storage capacity of water tanks at the Fukushima complex is expected to run out as early as next year. Suga said releasing the water is the most realistic option.

Japan's Ministry for Economy, Trade and Industry just released a basic policy for disposing of the stored treated water. The water has been treated using an advanced liquid processing system to remove all contaminants below environmental levels and stored in tanks on the complex premises. However, the processing system cannot remove tritium, the least radioactive, and least harmful, of all radioactive elements.

According to the policy document, the tritium will be diluted to 1500 becquerels per liter, which is 1/40 of the concentration permitted under Japanese safety standards and 1/7 of the World Health Organization's guideline for drinking water.

The total annual amount of tritium to be discharged "will be at a level below the operational target value for tritium discharge of the Fukushima Daiichi plant before the accident.” These discharge amounts are well within the range of the amounts from any nuclear power station around the world, even in Japan.

The International Atomic Energy Agency approves the Japanese government's plan noting that releasing it into the ocean meets global standards of practice. IAEA's Director General Rafael Grossi pointed out that this is a common way to release water at nuclear power plants, even when they are not in emergency situations.

I understand the fishermen being afraid. Their livelihoods are on the line, even if the water isn’t dangerous. That’s the power of the unwarranted fear of radiation, even at these trivial levels.

And trivial they are. The radiation dose from one quart of this water is equal to four bananas or a family-sized bag of potato chips. A ton of this water gives a dose of approximately 4 mSv, about the average annual background dose to everyone in America, and less than a single chest CT scan which is 7 mSv. 

Critics, like Greenpeace, weighed in with the usual every-atom-is-dangerous nonsense and seems to think this water should be stored and treated forever. They don’t seem to understand the radiation, or the chemistry, of tritium. But few do.

Scientists who do understand the problem and the science (including yours truly, who has personally worked with U.S. government labs on nuclear containment issues for 30 years), have always recommended slowly releasing the tritium-contaminated water into the Pacific Ocean over about a ten-year period.

Although not intuitive, this is a very good idea. Tritium is the mildly radioactive isotope of hydrogen that has two neutrons and one proton, with radioactivity so low that no environmental or human problems have ever come from it, even though it is a common radioactive element in the environment. Tritium is formed naturally by atmospheric processes as well as in nuclear weapons testing and in nuclear power plants.

No harm has come to humans or the environment from tritium, no matter what the concentration or the dose, but Tritium is just assumed to be carcinogenic to humans at extremely high levels, although that claim is only hypothetical since adverse health effects from tritium have never appeared. Only laboratory studies on mice at extremely high levels have shown any adverse health effects and then only after forcing them to ingest 37,000,000 Bq/liter.

Putting this water into the ocean is without doubt the best way to get rid of it. Concentrating it and containerizing it actually causes more of a potential hazard to people and the environment. And is very, very expensive with no benefit.

Unfortunately, the idea of releasing radioactivity of any sort makes most people cringe. But that’s the problem, only the perception of tritium is bad, not the reality. And in our new world of anti-science, such a wrong idea might rule over what is the right thing to do, wasting precious resources and time.

The scientific reality is tritium emits an incredibly weak beta particle, with an energy of only 6 keV, that is easily stopped by our dead skin layer. It only goes a quarter inch in air. Even ingestion of tritium doesn’t do anything. We’ve tried.

The health risks of tritium-contaminated water are so low that all the countries of the world have no idea what regulatory limits to put on it.

Using Becquerel per liter as the concentration unit (a Bq is a disintegration of a single nucleus per second), the United States has set 740 Bq/L for drinking water, but Canada has 7,000 Bq/L as its limit. Switzerland set 10,000 Bq/L, and Australia a whopping 76,103 Bq/L.

But these limits were just pulled out of thin air. They are not health-based. They were chosen because they were easy to achieve. Meaning none of these levels, or a hundred times these levels, are harmful.

Why is this the case?

Hydrogen is a really small atom and easily gets through microscopic pores, even biological membranes and cell walls. Tritium, which is still hydrogen chemically, can be found in water molecules, which are two hydrogen atoms and one oxygen atom.

Because tritium is three times heavier than normal hydrogen because of two neutrons in its nucleus, tritium tends to replace normal hydrogen in water molecules, rapidly diluting any tritium in our bodies and in the environment. Tritium likes to be in water, not in tissue.

Our bodies are mostly hydrogen, and that is mostly in water. So while tritium’s radioactive half-life is 12.3 years, its biological half-life in our bodies is only 10 days. Therefore, ingestion of this weak emitter doesn’t have the same effect as most other ingested radionuclides.

It’s also difficult for the extremely low-energy beta from tritium to get through the water, cell walls and other materials in between its nucleus and any DNA. The energy in the slow-moving beta from tritium mostly gets dispersed within the electron clouds of other molecules through inelastic collisions and the Bremsstrahlung effect. This turns the kinetic energy of the beta emission into electromagnetic non-ionizing energy.

In the end, it is impossible to get a significant radiation dose from tritium, unlike any other radionuclide. It exits the body and is diluted too quickly.

Even more important, there’s more tritium in the atmosphere from natural processes and left over from old bomb testing, than ever has been, or will be, released from commercial reactors. Cosmic rays produce four million curies worth of tritium every year (150,000,000,000,000,000 Bq) in the upper atmosphere, much of which rains out into surface waters that we end up drinking.

Typical cosmogenic tritium concentrations in seawater are about 700 Bq/m3 (19 pCi/L), greater than what is in most of these Fukushima tanks.

These amounts of tritium from other sources are millions of times greater than what would be slowly released from these tanks at Fukushima. Since there’s been no health or environmental effects from any of these larger sources, it’s hard to get excited about releasing such a tiny amount from Fukushima into the ocean.

Besides, there are 16,280,000,000,000,000,000,000 Bq of potassium-40, rubidium-87 and many more radionuclides already in the world’s oceans. So the fish are swimming in plenty of natural radioactive material anyway, more than this Fukushima water could ever provide.

The biological half-life of tritium in fish and marine life is even shorter than in humans, less than 2 days, and the dilution in seawater is too rapid for any significant dose to get back to any people because the physical and chemical properties of tritium mean it does not concentrate up the food chain - it dilutes up the food chain.

So while Japanese fishermen fear this strategy of release from a public relations perspective, their fish will still test negative with respect to food radiation limits and their packaged fish sold at market would still carry the official “safe” stickers.

As usual, it all comes down to perception and fear. We as scientists can give you the answers, but you can ignore them if you want, especially since non-scientists make these decisions anyway.

This particular problem with Fukushima is really important because Japan needs to restart most of their reactors that were shut down after the earthquake in 2011. They were not affected by the quake or the tsunami that followed, and wouldn’t be by future ones.

Nuclear power is critical to addressing global warming, not to mention Japan’s economic doldrums. Japan was once at the forefront in the fight against global warming but their carbon emissions have skyrocketed since the output from their nuclear plants were unnecessarily replaced by fossil fuels.

Follow me on Twitter or LinkedIn